Conformation and dynamics of nucleotides in bulges and symmetric internal loops in duplex DNA studied by EPR and fluorescence spectroscopies.

نویسندگان

  • Pavol Cekan
  • Snorri Th Sigurdsson
چکیده

The dynamics and conformation of base bulges and internal loops in duplex DNA were studied using the bifunctional spectroscopic probe Ç, which becomes fluorescent (Ç(f)) upon reduction of the nitroxide functional group, along with EPR and fluorescence spectroscopies. A one-base bulge was in a conformational equilibrium between looped-out and stacked states, the former favored at higher temperature and the latter at lower temperature. Stacking of bulge bases was favored in two- and three-base bulges, independent of temperature, resulting in DNA bending as evidenced by increased fluorescence of Ç(f). EPR spectra of Ç-labeled three-, four- and five-base symmetrical interior DNA bulges at 20 °C showed low mobility, indicating that the spin-label was stacked within the loop. The spin-label mobility at 37 °C increased as the loops became larger. A considerable variation in fluorescence between different loops was observed, as well as a temperature-dependence within constructs. Fluorescence unexpectedly increased as the size of the loop decreased at 2 °C. Fluorescence of the smallest loops, where a single T·T mismatch was located between the stem region and the probe, was even larger than for the single strand, indicating a considerable local structural deformation of these loops from regular B-DNA. These results show the value of combining EPR and fluorescence spectroscopy to study non-helical regions of nucleic acids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Folding of the cocaine aptamer studied by EPR and fluorescence spectroscopies using the bifunctional spectroscopic probe Ç

The cocaine aptamer is a DNA molecule that binds cocaine at the junction of three helices. The bifunctional spectroscopic probe Ç was incorporated independently into three different positions of the aptamer and changes in structure and dynamics upon addition of the cocaine ligand were studied. Nucleoside Ç contains a rigid nitroxide spin label and can be studied directly by electron paramagneti...

متن کامل

Rigid spin-labeled nucleoside Ç: a nonperturbing EPR probe of nucleic acid conformation

Rigid spin-labeled nucleoside C, an analog of deoxycytidine that base-pairs with deoxyguanosine, was incorporated into DNA oligomers by chemical synthesis. Thermal denaturation experiments and circular dichroism (CD) measurements showed that C has a negligible effect on DNA duplex stability and conformation. Nucleoside C was incorporated into several positions within single-stranded DNA oligome...

متن کامل

A Study on the Aggregation and Calf Thymus DNA Binding Characteristics of Anionic Cobalt(II) Tetrasulfonated Phthalocyanine

The aggregation behavior of anionic Cobalt(II) 4,4′,4ʺ,4‴-tetrasulfonated phthalocyanine, [Co(TSPc)4-] was studied at its various concentrations and different ionic strengths using optical absorption and resonance light scattering (RLS) spectroscopies in 5 mM phosphate buffer, pH 7.0 at 25 °C. The results show no aggregation behavior at concentration range of 5.1 × 10-6-7....

متن کامل

Solution structure of dAATAA and dAAUAA DNA bulges.

The NMR structure analysis is described for two DNA molecules of identical stem sequences with a five base loop containing a pyrimidine, thymin or uracil, in between purines. These five unpaired nucleotides are bulged out and are known to induce a kink in the duplex structure. The dAATAA bulge DNA is kinked between the third and the fourth nucleotide. This contrasts with the previously studied ...

متن کامل

The importance of internal loops within RNA substrates of ADAR1.

Adenosine deaminases that act on RNA (ADARs) are a family of RNA editing enzymes that convert adenosines to inosines within double-stranded RNA (dsRNA). Although ADARs deaminate perfectly base-paired dsRNA promiscuously, deamination is limited to a few, selected adenosines within dsRNA containing mismatches, bulges and internal loops. As a first step in understanding how RNA structural features...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 420 3  شماره 

صفحات  -

تاریخ انتشار 2012